Published February 16, 2024
| Version v1
Dataset
Open
Caltech Fish Counting - Domain Adaptive Object Detection Dataset 2024
Description
A full instructional guide is provided here
CFC-DAOD is an expansion of the Caltech Fish Counting Dataset for detecting, tracking, and counting fish in sonar videos. This dataset is specifically focused on domain-adaptive object detection.
Files
cfc_train.zip
Files
(27.5 GB)
Name | Size | Actions |
---|---|---|
md5:935b4cd5ae5812035051f24e6707ee17
|
16.9 GB | Preview Download |
md5:0e559676de668a0bbc8391323d8b450f
|
11.4 MB | Preview Download |
md5:e662ae8318621d1a636f0befadddaf48
|
4.4 GB | Preview Download |
md5:d17e0485674327df3d7611a5d6b999b1
|
3.1 GB | Preview Download |
md5:9c15b9c9dc6784cce9dba21e81cb514a
|
3.0 GB | Preview Download |
md5:57ce891a14b8aa71699988ccd488ccf4
|
53.1 MB | Preview Download |
md5:c194923784eb8e5d64873a16c543ee64
|
17.2 MB | Preview Download |
md5:9b701b4b884c4061425dd82450c9974b
|
14.4 MB | Preview Download |
Additional details
- Alternative title
- CFC-DAOD 2024
- CISE Graduate Fellowships Grant 2313998
- National Science Foundation
- J-WAFS seed grant 2040131
- Massachusetts Institute of Technology
- EECS department Fellowship 4000184939
- Massachusetts Institute of Technology
- Resnick Sustainability Institute
- Available
-
2025-02-16