Published 2025 | Version GGG2020.R0
Text Open

The Total Carbon Column Observing Network's GGG2020 Data Version: Data Quality, Comparison with GGG2014, and Future Outlook

  • 1. ROR icon University of Toronto
  • 2. ROR icon Jet Propulsion Lab
  • 3. ROR icon California Institute of Technology
  • 4. ROR icon University of Wollongong
  • 5. ROR icon University of Bremen
  • 6. ROR icon National Institute of Water and Atmospheric Research
  • 7. Ludwig-Maximilians-Universität München, Lehrstuhl für Physik der Atmosphäre, Munich (DE)
  • 8. Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen (DE)
  • 9. Max Planck Institute for Biogeochemistry, Jena (DE)
  • 10. ROR icon Harvard University
  • 11. ROR icon Environmental Defense Fund
  • 12. ROR icon Environment and Climate Change Canada
  • 13. ROR icon Finnish Meteorological Institute
  • 14. ROR icon Karlsruhe Institute of Technology
  • 15. ROR icon Royal Belgian Institute for Space Aeronomy
  • 16. ROR icon National Institute of Environmental Research
  • 17. ROR icon German Meteorological Service
  • 18. ROR icon Science and Technology Facilities Council
  • 19. ROR icon Cyprus Institute
  • 20. National Institute of Meteorological Sciences, Seogwipo-si (KR)
  • 21. ROR icon Agencia Estatal de Meteorología
  • 22. ROR icon Los Alamos National Laboratory
  • 23. Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA), Sorbonne Université, CNRS, Paris (FR)
  • 24. ROR icon Ames Research Center
  • 25. ROR icon Japan Aerospace Exploration Agency

Description

New atmospheric gas retrievals using the GGG2020 version of the Total Carbon Column Observing Network (TCCON) dataset are significantly improved compared with the previous GGG2014 data version. The GGG2020 retrievals have lower variability across the network, better spectral fits, and smaller biases. The exception to this is XCH4 , which is, on average across the network, 5.3 ppb lower in GGG2020 than in GGG2014, a difference we mostly attribute to the a priori profiles used to perform the scaling. We discuss the remaining biases and corrections, the TCCON approach of identifying, quantifying, and minimizing biases, and suggest future work to further minimize the biases. The GGG2020 TCCON data are available from the TCCON archive at http://tccondata.org.

Files

GGG2020-GGG2014DataDescription-20250130b.pdf
Files (7.6 MB)
Name Size
md5:186cbf2ddca74a3b47dcde6015d70ca8
7.6 MB Preview Download

Additional details

Created:
January 31, 2025
Modified:
January 31, 2025