
Why Google

Choosing Google Cloud

Trust and security

Open cloud

Multicloud

Global infrastructure

Sustainability

Customers and case
studies

Analyst reports

Whitepapers

Products and pricing

GCP pricing

Google Workspace pricing

Maps Platform pricing

See all products

Solutions

Infrastructure
modernization

Databases

Application modernization

Smart analytics

ArtiBcial Intelligence

Security

Productivity & work
transformation

Industry solutions

DevOps solutions

Small business solutions

See all solutions

Resources

GCP documentation

GCP quickstarts

Google Cloud Marketplace

Google Workspace
Marketplace

Support

Code samples

Tutorials

Training

CertiBcations

Google Developers

Google Cloud for Startups

System status

Release Notes

Engage

Contact sales

Find a Partner

Become a Partner

Blog

Events

Podcast

Developer Center

Press center

Google Cloud on YouTube

Google Cloud Tech on
YouTube

Google Workspace on
YouTube

Follow on Twitter

Join User Research

We're hiring. Join Google
Cloud!

About
Google

| Priva
cy

| Site
terms

| Google Cloud
terms

Carbon neutral since
2007

Sign up for the Google Cloud
newsletter

Subscribe English!

"

"

samples/snippets/document_text/doctext.py View on GitHub

samples/snippets/document_text/doctext.py View on GitHub

samples/snippets/document_text/doctext.py View on GitHub

samples/snippets/document_text/doctext.py View on GitHub

Cloud Vision API Documentation Guides Rate and review

Table of contents#
Audience

Prerequisites

Annotating an image using Document Text OCR

Complete code listing

A closer look at the code

$

Audience

The goal of this tutorial is to help you develop applications using Google Cloud Vision API Document Text Detection. It
assumes you are familiar with basic programming constructs and techniques, but even if you are a beginning
programmer, you should be able to follow along and run this tutorial without di[culty, then use the Cloud Vision API
reference documentation to create basic applications.

Prerequisites

Set up a Cloud Vision API project in the Google Cloud Console.

Set up your environment for using Application Default Credentials.

Install Python%.

Install pip%.

Install the Google Cloud Client Library% and the Python Imaging Library%.

Annotating an image using Document Text OCR

This tutorial walks you through a basic Vision API application that makes a DOCUMENT_TEXT_DETECTION request, then
processes the fullTextAnnotation response.

Note that both standard TEXT_DETECTION and DOCUMENT_TEXT_DETECTION return fullTextAnnotations, as described below.

However, there is no input character limit on the premium DOCUMENT_TEXT_DETECTION feature. Also, if both TEXT_DETECTION and

DOCUMENT_TEXT_DETECTION are speciBed in a Cloud Vision request, DOCUMENT_TEXT_DETECTION will take precedence.

A fullTextAnnotation is a structured hierarchical response for the UTF-8 text extracted from the image, organized as
Pages→Blocks→Paragraphs→Words→Symbols:

Page is a collection of blocks, plus meta-information about the page: sizes, resolutions (X resolution and Y
resolution may differ).

Block represents one "logical" element of the page—for example, an area covered by text, or a picture or separator
between columns. The text and table blocks contain the main information needed to extract the text.

Paragraph is a structural unit of text representing an ordered sequence of words. By default, words are
considered to be separated by word breaks.

Word is the smallest unit of text. It is represented as an array of Symbols.

Symbol represents a character or a punctuation mark.

The fullTextAnnotation also can provide URLs to Web images that partially or fully match the image in the request.

The previous textAnnotations OCR output will continue to be supported, and is available in the JSON Response as

textAnnotations.

Complete code listing

As you read the code, we recommend that you follow along by referring to the Cloud Vision API Python reference.

This simple application performs the following tasks:

Imports the libraries necessary to run the application

Takes three arguments passes it to the main() function:

image_file — the input image Ble to be annotated

output_file —the output Blename into which Cloud Vision will generate an output image with polyboxes
drawn

Creates an ImageAnnotatorClient instance to interact with the service

Sends the request and returns a response

Creates an output image with boxes drawn around the text

A closer look at the code

Importing libraries

We import standard libraries:

argparse to allow the application to accept input Ble names as arguments

enum for the FeatureType enumeration

io for File I/O

Other imports:

The ImageAnnotatorClient class within the google.cloud.vision library for accessing the Vision API.

The types module within the google.cloud.vision library for constructing requests.

The Image and ImageDraw libraries from the PIL library are used to create the output image with boxes drawn
on the input image.

Running the application

Here, we simply parse the passed-in arguments and pass it to the render_doc_text() function.

Authenticating to the API

Before communicating with the Vision API service, you must authenticate your service using previously acquired
credentials. Within an application, the simplest way to obtain credentials is to use Application Default Credentials (ADC).
By default, the Cloud client library will attempt to obtain credentials from the GOOGLE_APPLICATION_CREDENTIALS
environment variable, which should be set to point to your service account's JSON key Ble (see Setting Up a Service
Account for more information).

Making the API request and reading text bounds from the response

Now that our Vision API service is ready, we can access the service by calling the document_text_detection method
of the ImageAnnotatorClient instance.

The client library encapsulates the details for requests and responses to the API. See the Vision API Reference for
complete information on the structure of a request.

After the client library has handled the request, our response will contain an AnnotateImageResponse, which consists of a
list of Image Annotation results, one for each image sent in the request. Because we sent only one image in the request,
we walk through the full TextAnnotation, and collect the boundaries for the speciBed document feature.

Running the application

To run the application, you can download this receipt.jpg Ble (you may need to right-click the link), then pass the
location where you downloaded the Ble on on your local machine to the tutorial application (doctext.py).

Here is the Python command, followed by the Text Annotation output images.

The following image shows words in yellow boxes and sentences in red.

Congratulations! You've performed Text Detection using Google Cloud Vision Full Text Annotations!

Rate and review

Send feedback

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the
Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its a[liates.

Last updated 2021-06-08 UTC.

& &

Send feedbackDocument Text Tutorial '

Python

import argparse
from enum import Enum
import io

from google.cloud import vision
from PIL import Image, ImageDraw

class FeatureType(Enum):
 PAGE = 1
 BLOCK = 2
 PARA = 3
 WORD = 4
 SYMBOL = 5

def draw_boxes(image, bounds, color):
 """Draw a border around the image using the hints in the vector list."""
 draw = ImageDraw.Draw(image)

 for bound in bounds:
 draw.polygon([
 bound.vertices[0].x, bound.vertices[0].y,
 bound.vertices[1].x, bound.vertices[1].y,
 bound.vertices[2].x, bound.vertices[2].y,
 bound.vertices[3].x, bound.vertices[3].y], None, color)
 return image

def get_document_bounds(image_file, feature):
 """Returns document bounds given an image."""
 client = vision.ImageAnnotatorClient()

 bounds = []

 with io.open(image_file, 'rb') as image_file:
 content = image_file.read()

 image = vision.Image(content=content)

 response = client.document_text_detection(image=image)
 document = response.full_text_annotation

 # Collect specified feature bounds by enumerating all document features
 for page in document.pages:
 for block in page.blocks:
 for paragraph in block.paragraphs:
 for word in paragraph.words:
 for symbol in word.symbols:
 if (feature == FeatureType.SYMBOL):
 bounds.append(symbol.bounding_box)

 if (feature == FeatureType.WORD):
 bounds.append(word.bounding_box)

 if (feature == FeatureType.PARA):
 bounds.append(paragraph.bounding_box)

 if (feature == FeatureType.BLOCK):
 bounds.append(block.bounding_box)

 # The list `bounds` contains the coordinates of the bounding boxes.
 return bounds

def render_doc_text(filein, fileout):
 image = Image.open(filein)
 bounds = get_document_bounds(filein, FeatureType.BLOCK)
 draw_boxes(image, bounds, 'blue')
 bounds = get_document_bounds(filein, FeatureType.PARA)
 draw_boxes(image, bounds, 'red')
 bounds = get_document_bounds(filein, FeatureType.WORD)
 draw_boxes(image, bounds, 'yellow')

 if fileout != 0:
 image.save(fileout)
 else:
 image.show()

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('detect_file', help='The image for text detection.')
 parser.add_argument('-out_file', help='Optional output file', default=0)
 args = parser.parse_args()

 render_doc_text(args.detect_file, args.out_file)

import argparse
from enum import Enum
import io

from google.cloud import vision
from PIL import Image, ImageDraw

parser = argparse.ArgumentParser()
parser.add_argument('detect_file', help='The image for text detection.')
parser.add_argument('-out_file', help='Optional output file', default=0)
args = parser.parse_args()

render_doc_text(args.detect_file, args.out_file)

"""Returns document bounds given an image."""
client = vision.ImageAnnotatorClient()

bounds = []

with io.open(image_file, 'rb') as image_file:
 content = image_file.read()

image = vision.Image(content=content)

response = client.document_text_detection(image=image)
document = response.full_text_annotation

Collect specified feature bounds by enumerating all document features
for page in document.pages:
 for block in page.blocks:
 for paragraph in block.paragraphs:
 for word in paragraph.words:
 for symbol in word.symbols:
 if (feature == FeatureType.SYMBOL):
 bounds.append(symbol.bounding_box)

 if (feature == FeatureType.WORD):
 bounds.append(word.bounding_box)

 if (feature == FeatureType.PARA):
 bounds.append(paragraph.bounding_box)

 if (feature == FeatureType.BLOCK):
 bounds.append(block.bounding_box)

The list `bounds` contains the coordinates of the bounding boxes.

$ python doctext.py receipt.jpg -out_file out.jpg

()

Vision API

Product overview

Features list

Try it!

Quickstarts

All Quickstarts

Set up the Vision API

Using client libraries

Using the command line

Using API explorer

Samples

All Vision API code samples

All code samples for all products

How-to Guides

All How-to guides

Before you begin

Detect crop hints

Detect faces

Detect image properties

Detect labels

Detect landmarks

Detect logos

Detect multiple objects

Detect explicit content (SafeSearch)

Detect Web entities and pages

Using Vision with Spring framework

Base64 encode

Tutorials

All tutorials

Text detection (OCR) tutorial

Translating and speaking text from a
photo

Face detection tutorial

Label detection tutorial

Document Text tutorial

Web detection tutorial

Crop hints tutorial

Search community tutorials%

Security logging

Cloud audit logs

Optical character recognition (OCR)!

Batch feature detection!

Restricted access*!

Overview Guides Reference Samples Support ResourcesCloud Vision API Contact Us

Why Google Solutions Products Pricing Getting Started + Docs Support English! Console

https://cloud.google.com/why-google-cloud/
https://cloud.google.com/security/
https://cloud.google.com/open-cloud/
https://cloud.google.com/multicloud/
https://cloud.google.com/infrastructure/
https://cloud.google.com/sustainability/
https://cloud.google.com/customers/
https://cloud.google.com/analyst-reports/
https://cloud.google.com/whitepapers/
https://cloud.google.com/pricing/
https://workspace.google.com/pricing.html
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/products/
https://cloud.google.com/solutions/infrastructure-modernization/
https://cloud.google.com/solutions/databases/
https://cloud.google.com/solutions/application-modernization/
https://cloud.google.com/solutions/smart-analytics/
https://cloud.google.com/solutions/ai/
https://cloud.google.com/solutions/security/
https://workspace.google.com/enterprise/
https://cloud.google.com/solutions/#industry-solutions
https://cloud.google.com/solutions/devops/
https://cloud.google.com/solutions/#role-based-solutions-smb
https://cloud.google.com/solutions/
https://cloud.google.com/docs/
https://cloud.google.com/gcp/getting-started/
https://cloud.google.com/marketplace/
https://workspace.google.com/marketplace/
https://cloud.google.com/support-hub/
https://cloud.google.com/docs/samples
https://cloud.google.com/docs/tutorials/
https://cloud.google.com/training/
https://cloud.google.com/certification
https://developers.google.com/
https://cloud.google.com/developers/startups/
https://status.cloud.google.com/
https://cloud.google.com/release-notes
https://cloud.google.com/contact/
https://cloud.withgoogle.com/partners
https://cloud.google.com/partners/become-a-partner/
https://cloud.google.com/blog/
https://cloud.google.com/events/
https://www.gcppodcast.com/
https://cloud.google.com/developers/
https://cloud.google.com/press/
https://www.youtube.com/googlecloud
https://www.youtube.com/googlecloudplatform
https://www.youtube.com/googleworkspace
https://twitter.com/googlecloud
https://userresearch.google.com/?reserved=1&utm_source=website&Q_Language=en&utm_medium=own_srch&utm_campaign=CloudWebFooter&utm_term=0&utm_content=0&productTag=clou&campaignDate=jul19&pType=devel&referral_code=jk212693
https://careers.google.com/cloud
https://about.google/
https://policies.google.com/privacy
https://www.google.com/intl/en/policies/terms/regional.html
https://cloud.google.com/product-terms/
https://cloud.google.com/sustainability
https://cloud.google.com/newsletter/
https://github.com/googleapis/python-vision/blob/HEAD/samples/snippets/document_text/doctext.py
https://github.com/googleapis/python-vision/blob/HEAD/samples/snippets/document_text/doctext.py
https://github.com/googleapis/python-vision/blob/HEAD/samples/snippets/document_text/doctext.py
https://github.com/googleapis/python-vision/blob/HEAD/samples/snippets/document_text/doctext.py
https://cloud.google.com/vision
https://cloud.google.com/vision/docs
https://cloud.google.com/vision/docs/features-list
https://cloud.google.com/vision
https://cloud.google.com/vision/docs/features-list
https://cloud.google.com/vision/docs/drag-and-drop
https://cloud.google.com/vision/docs/quickstarts
https://cloud.google.com/vision/docs/setup
https://cloud.google.com/vision/docs/quickstart-client-libraries
https://cloud.google.com/vision/docs/quickstart-cli
https://cloud.google.com/vision/docs/quickstart
https://cloud.google.com/vision/docs/samples
https://cloud.google.com/docs/samples
https://cloud.google.com/vision/docs/how-to
https://cloud.google.com/vision/docs/before-you-begin
https://cloud.google.com/vision/docs/detecting-crop-hints
https://cloud.google.com/vision/docs/detecting-faces
https://cloud.google.com/vision/docs/detecting-properties
https://cloud.google.com/vision/docs/labels
https://cloud.google.com/vision/docs/detecting-landmarks
https://cloud.google.com/vision/docs/detecting-logos
https://cloud.google.com/vision/docs/object-localizer
https://cloud.google.com/vision/docs/detecting-safe-search
https://cloud.google.com/vision/docs/detecting-web
https://cloud.google.com/vision/docs/adding-spring
https://cloud.google.com/vision/docs/base64
https://cloud.google.com/vision/docs/tutorials
https://cloud.google.com/vision/docs/ocr-tutorial
https://cloud.google.com/translate/docs/hybrid-glossaries-tutorial
https://cloud.google.com/vision/docs/face-tutorial
https://cloud.google.com/vision/docs/label-detection-tutorial
https://cloud.google.com/vision/docs/fulltext-annotations
https://cloud.google.com/vision/docs/internet-detection
https://cloud.google.com/vision/docs/crop-hints
https://cloud.google.com/community/tutorials?q=vision
https://cloud.google.com/vision/docs/audit-logging
https://cloud.google.com/vision/docs
https://cloud.google.com/vision/docs/features-list
https://cloud.google.com/vision/docs/apis
https://cloud.google.com/vision/docs/samples
https://cloud.google.com/vision/docs/support
https://cloud.google.com/vision/docs/resources
https://cloud.google.com/vision
https://cloud.google.com/contact
https://cloud.google.com/
https://cloud.google.com/docs
https://cloud.google.com/support-hub
https://accounts.google.com/SignOutOptions?hl=en&continue=https://cloud.google.com/_d/profile/ogb

