Published May 31, 2023 | Version v1
Dataset Open

Dataset for MABe22: A Multi-Species Multi-Task Benchmark for Learned Representations of Behavior

  • 1. ROR icon California Institute of Technology
  • 2. JAX
  • 3. ROR icon Janelia Research Campus
  • 4. AICrowd
  • 5. ROR icon Northwestern University

Citation

Sun, J., Marks, M., Guether, B., Kumar, V., Robie, A., Schretter, C., Sheppard, K., Chakraborty, D., Wagner, J., Parker, J., Branson, K., & Kennedy, A. (2023). Dataset for MABe22: A Multi-Species Multi-Task Benchmark for Learned Representations of Behavior [Data set]. CaltechDATA. https://doi.org/10.22002/rdsa8-rde65

Description

Please cite the following paper if you find the dataset useful: https://arxiv.org/abs/2207.10553

We introduce MABe22, a large-scale, multi-agent video and trajectory benchmark to assess the quality of learned behavior representations. This dataset is collected from a variety of biology experiments, and includes triplets of interacting mice (4.7 million frames video+pose tracking data, 10 million frames pose only), symbiotic beetle-ant interactions (10 million frames video data), and groups of interacting flies (4.4 million frames of pose tracking data). Accompanying these data, we introduce a panel of real-life downstream analysis tasks to assess the quality of learned representations by evaluating how well they preserve information about the experimental conditions (e.g. strain, time of day, optogenetic stimulation) and animal behavior. We test multiple state-of-the-art self-supervised video and trajectory representation learning methods to demonstrate the use of our benchmark, revealing that methods developed using human action datasets do not fully translate to animal datasets. We hope that our benchmark and dataset encourage a broader exploration of behavior representation learning methods across species and settings.

Files

mouse_submission_videos_resized_224.zip
Files (36.5 GB)
Name Size
md5:7f10c2b676e7dd8b4348423f0ee0aa8a
171.4 MB Download
md5:26ab62c0a34dbe64c26fdc7cbd16ed37
170.8 MB Download
md5:e7536df54d184bb5c66823bc5317282a
3.5 GB Preview Download
md5:f740557dc7982325fbf73033703cfd51
24.5 kB Download
md5:9356829421ec71ed7291a222d9c2d031
4.1 GB Download
md5:5a54f2d29a13a256aabbefc61a633176
349.9 MB Download
md5:f43f0f8824ffe6a4496eaf3ba7559d5c
1.9 GB Download
md5:c6f140ae4bbd20a03cf00bd4ca9a59d7
195.5 MB Download
md5:0d824943159d929ce1aa7f17cc63cf83
137.6 MB Download
md5:f14b94f278fb0c1790f9d27256224b2f
987.2 MB Download
md5:2a4f433b1210af485b6b94c57c268114
49.4 MB Download
md5:68a9fe1fe71225787a4dae6369acc9dc
948.9 MB Download
md5:ffc1dcae90176cdac4ff4fe123e18f25
83.6 kB Download
md5:76a48f3a1679a219a0e7e8a87871cc74
852.7 MB Download
md5:937f2deda0d263051d2070966d132666
65.9 MB Download
md5:387ab6db82e1a8a6dae6f6a8c30b0aca
5.2 GB Download
md5:389bc12c9ad49b7cb50b531707b448a5
417.8 MB Download
md5:0a37e2c51822f925e23dd276870aee53
435.9 kB Download
md5:80ad9446cfdfee5acaac5f69ec8a361e
718.0 MB Download
md5:8e943feb73b2faefd5b859955d51f73a
5.0 GB Preview Download
md5:c80719d61b93f904acfb8b017a178c01
1.0 GB Preview Download
md5:e0d8f796277adc001afebde443717b26
1.5 GB Preview Download
md5:9830cebad167449b5fed658c0f424bd9
5.2 GB Download
md5:9356829421ec71ed7291a222d9c2d031
4.1 GB Download
Created:
June 29, 2023
Modified:
June 29, 2023